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Abstract—This paper analyzes Dynamic Programming as a 

key model-based approach for solving Reinforcement Learning 

problems formulated as Markov Decision Processes, focusing on 

the Value Iteration algorithm, a fundamental Dynamic 

Programming method that finds an optimal policy by iteratively 

calculating the value of each state when the environment's model 

is known. A Python implementation is provided to demonstrate 

this technique by solving for the optimal policy in a stochastic 

GridWorld environment. 
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I.  INTRODUCTION  

Reinforcement Learning (RL) is one of the three main 
paradigms in machine learning, alongside supervised learning 
and unsupervised learning. RL focuses on how an intelligent 
agent should take a series of actions in an environment to 
maximize the cumulative reward signal it receives. This 
paradigm is inspired by behavioral psychology, where agents 
learn through trial-and-error. 

The basic interactions in RL happen in discrete loops. At 
every time step 𝑡, the agent perceives the present condition of 
the environment, 𝑠(𝑡). From these observations, the agent 
chooses an action, 𝑎(𝑡). Consequently, the environment shifts to 
a new condition, 𝑠(𝑡 + 1), and gives a numerical reward, 𝑟(𝑡 +
1), to the agent. The agent's main objective is not to enhance the 
immediate reward, but to increase the overall reward gathered 
over an extended period. This presents a distinct challenge 
referred to as the credit assignment problem, where the agent 
needs to identify which actions in a series will have the greatest 
impact on its future, frequently postponed, reward. 

Unlike supervised learning, which learns from labeled data 
(examples of correct input-output relationships), the RL agent is 
not told which actions to take. Instead, it must discover the most 
profitable actions by exploring the environment. This difference 
makes RL particularly well-suited for problems involving 
sequential decision making under uncertainty, such as in 
strategic games, robotics, resource management, and 
autonomous control systems. 

The main objective of this paper is to provide a 
comprehensive explanation and practical demonstration of the 
application of Dynamic Programming (DP) algorithm strategies 

in finding the optimal solution to a Markov Decision Processes. 
Finding the optimal solution means finding a policy, or strategy, 
that maximizes the total expected reward from all initial states. 

II. THEORY 

A. Dynamic Programming 

Dynamic Programming is an effective technique for 

problem-solving, particularly for optimization (maximization or 

minimization) challenges. It operates by dividing the resolution 

of a complicated issue into a sequence of steps. Consequently, 

the complete solution can be seen as a sequence of connected 

choices made at every stage.  

The method operates on the Principle of Optimality. This 

principle states that if a total solution is optimal, then every part 
of the solution up to a certain stage must also be optimal. This 

means that when moving from stage k to stage k+1, one can use 

the optimal result from stage k without having to recalculate 

from the beginning. 

Problems that can be solved with Dynamic Programming 

have the following characteristics: 

 The problem can be divided into several stages, and 

only one decision is made at each stage. 

 Each stage consists of a number of states, which 

generally represent the various possible inputs at 

that stage. 

 The decision made at one stage transforms the 
current state into a state in the subsequent stage. 

 A recursive relationship exists that identifies the 

best decision for any state at stage k, which in turn 

provides the best decision for any state at stage k+1. 

 The Principle of Optimality is applicable to the 

problem.  

The main difference between Dynamic Programming and 

Greedy Algorithms is: 

 Greedy: Only a single sequence of decisions is 

generated. 

 Dynamic Programming: More than one sequence of 
decisions is considered to find the overall optimal 

solution. 

There are two main approaches to implementing Dynamic 

Programming: 
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 Forward (or up-down) Dynamic Programming: 

Calculations begin from the first stage (1) and move 

forward to the final stage (n). 

 Backward (or bottom-up) Dynamic Programming: 

Calculations begin from the final stage (n) and move 
backward to the first stage (1). 

The development of a Dynamic Programming algorithm 

follows these steps: 

1. Characterize the structure of an optimal solution: This 

involves defining the stages, states, and decision 

variables. 

2. Recursively define the value of an optimal solution: 

Formulate a recursive relationship that connects the 

optimal value of one stage to the previous one 

3. Compute the value of an optimal solution: Calculate 

the optimal solution's value in a forward or backward 
manner, typically using a table. 

4. Construct an optimal solution (Optional): Reconstruct 

the sequence of decisions that leads to the optimal 

solution. 

It is important to note that the word "program" in "Dynamic 

Programming" does not refer to computer programming, but 

rather to the tabular approach used to construct the solution, 

similar to the term "linear programming." The term "dynamic" 
arises because the process of finding a solution often involves 

filling in a table in stages, which can be viewed as a process that 

evolves over time. 

 

B. Reinforcement Learning 

Reinforcement Learning is an area of machine learning 
concerned with how an intelligent agent ought to take actions in 
an environment in order to maximize a cumulative reward. It is 
a trial-and-error learning process, much like training a pet. The 
agent is not told which actions to take, but instead must discover 
which actions result the most reward by trying them. 

 

 

Figure 1. Model-based vs Model-free Approach 

Source: [7] 

RL algorithms can be categorized in several ways. The most 
common distinctions are based on whether the agent uses a 
model of the environment and what the agent learns. 

 Model-Based RL: The agent first tries to build a model 
of the environment. This model predicts the 
environment's responses to the agent's actions (i.e., it 
learns the transition probabilities and reward function). 
Once the agent has this model, it can use it for planning 

to find the best policy without needing to interact with 
the real environment anymore. 

o Advantage: Very data-efficient. It can learn a 
lot from few real-world interactions. 

o Disadvantage: The agent's performance is 
limited by the accuracy of its learned model. 

 Model-Free RL: The agent does not try to build an 
explicit model of the environment. It learns a policy 
directly from trial-and-error interaction. This is the 
more common approach in modern RL. 

o Advantage: More flexible and easier to 
implement, as it doesn't need to create a 
potentially complex model. 

o Disadvantage: Requires a very large number 
of interactions (it is data-hungry) to learn 
effectively. 

 

Figure 2. Policy-Based vs Value-Based methods 

Source: [6] 

 Most modern research focuses on model-free algorithms. RL 
algorithm can be further divided into three main types: 

 Value-Based Methods: These methods focus on 
learning a value function. The value function estimates 
the maximum expected future reward from being in a 
particular state (V-function) or from taking a particular 
action in a state (Q-function). The policy is implicit: the 
agent simply chooses the action that has the highest 
estimated value. 

o What it learns: The value of state-action pairs, 
Q(s, a). 

o Examples: Q-Learning, Deep Q-Networks 
(DQN), SARSA. 

 Policy-Based Methods: These methods directly learn 
the policy function, 𝜋(𝑎 ∣ 𝑠), which is a direct mapping 
from states to actions (or probabilities of actions). 
Instead of learning values, the algorithm adjusts the 
parameters of the policy directly to maximize reward. 

o What it learns: The policy, 𝜋(𝑎 ∣ 𝑠). 

o Examples: REINFORCE, Policy Gradients. 
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 Actor-Critic Methods: This is a hybrid approach that 
combines the best of both value-based and policy-
based methods. It uses two components that learn 
simultaneously: 

o The Actor (policy-based) is responsible for 
choosing an action. 

o The Critic (value-based) evaluates the action 
taken by the Actor by computing a value 
function. The critic's feedback is then used to 
"coach" or improve the actor's policy. This 
approach is the foundation for many state-of-
the-art algorithms. 

o What it learns: Both a policy and a value 
function. 

o Examples: A2C/A3C, DDPG, PPO (Proximal 
Policy Optimization). 

C. Value Iteration Algorithm 

One of the fundamental DP algorithms for this purpose is 

Value Iteration. It perfectly illustrates the DP principles in 
action.  

In Value Iteration, the goal is to find the optimal value 

function, which estimates the best possible long-term reward 

achievable from each state in the environment. 

1. Initialization: It initializes a table with an arbitrary 

value for every state 𝑉0(𝑠). A common practice is to 

initialize all values to zero. 

 

𝑉0(𝑠) = 0 ∀𝑠 ∈ 𝑆 
 

2. Iterative Update: In each subsequent stage (iteration 𝑘), 

it calculates a new value for every state, 𝑉𝑘(𝑠), by 

applying the Bellman equation to the values from the 

previous stage, 𝑉𝑘−1(𝑠).  

 

𝑉𝑘(𝑠) ← max
𝑎∈𝐴

∑ 𝑃𝑎(𝑠, 𝑠′)[𝑅𝑎(𝑠, 𝑠′) + γ𝑉𝑘−1(𝑠′)]

𝑠′∈𝑆

 

 

3. Convergence: This process is repeated until the values 

in the table converge, meaning they no longer change 

significantly between iterations. The algorithm stops 

when the largest change in any state's value is smaller 

than a predefined threshold θ. 

 

max
𝑠∈𝑆

|𝑉𝑘(𝑠) − 𝑉𝑘−1(𝑠)| < θ  

 

 

4. Constructing the Solution: Once the algorithm 

converges on the optimal value function (𝑉∗), the final 

step is to extract the optimal policy  π∗(𝑠). This is done 

by selecting the action in each state that leads to the 
successor state with the highest optimal value. 

 

π∗(𝑠) = arg max
𝑎∈𝐴

∑ 𝑃𝑎(𝑠, 𝑠′)[𝑅𝑎(𝑠, 𝑠′) + γ𝑉∗(𝑠′)]

𝑠′∈𝑆

 

 

D. Markov Decision Process 

A Markov Decision Process (MDP) is a mathematical 
framework used to model decision-making in situations where 
outcomes are partly random and partly under the control of a 
decision-maker. It provides the formal language for describing 
the environment in Reinforcement Learning. 

An MDP is defined by five key components, often 
represented as a tuple (S, A, P, R, γ): 

1) S (States): A set of all possible situations or states the agent 
can be in. For example, the location of a robot on a grid, or 
the configuration of pieces on a chessboard. 

2) A (Actions): A set of all possible actions the agent can take. 
For example, the robot's possible moves (north, south, east, 
west). 

3) P (Transition Probability Function): 𝑃(𝑠′ | 𝑠, 𝑎). This is the 
probability of transitioning from a state s to a new state 𝑠′ 
after the agent takes action 𝑎. This function defines the 
dynamics of the environment, including its uncertainty. For 
instance, an action to move north might have a 90% chance 
of success but a 10% chance of sliding east. 

4) R (Reward Function): 𝑅(𝑠, 𝑎, 𝑠′). This is the immediate 
reward the agent receives after transitioning from state 𝑠 to 
𝑠′ as a result of action 𝑎. The reward signal defines the goal 
for the agent. A large positive reward might be given for 
reaching a target, and a negative reward (a penalty) for 
hitting an obstacle. 

5) γ (Discount Factor): A value between 0 and 1 that determines 
the importance of future rewards. A value close to 1 makes 
the agent farsighted (caring about long-term rewards), while 
a value close to 0 makes it shortsighted (caring only about 
immediate rewards). 

The MDP is the problem formulation, and Reinforcement 

Learning is the set of solution methods. An RL problem is, at 

its core, the problem of solving an MDP. The goal of any RL 

agent is to find an optimal policy  𝜋∗(𝑠). A policy is a strategy 

that tells the agent which action to take in any given state. An 

optimal policy is the one that maximizes the cumulative 

discounted reward over the long run. The connection becomes 

clearer when we consider the two main approaches in RL: 

 Model-Based Reinforcement Learning: Planning with 
a Known Model. This paradigm assumes that the agent 

has complete, a priori knowledge of the environment's 

model. The model consists of the transition probability 

function (P) and the reward function (R). With access 

to the full dynamics of the MDP, the task of finding an 

optimal policy is transformed from a learning problem 

into a pure planning problem. The agent does not need 

to engage in exploratory trial-and-error interaction 

with the environment. Instead, it can leverage planning 

algorithms, most notably those derived from Dynamic 

Programming (e.g., Value Iteration and Policy 

Iteration), to directly and deterministically compute 
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the optimal policy. This is analogous to solving a 

system for which all governing equations are known. 

 Model-Free Reinforcement Learning: Learning 

without a Known Model. This paradigm addresses the 

more common and complex scenario where the 

environmental model is unknown or inaccessible to 

the agent. The dynamics of the environment are thus 

treated as an "black box.". While the agent can 

perceive its current state and the set of available 

actions, it cannot predict the subsequent state or the 

immediate reward that will result from a given action. 

To solve the MDP, the agent must interact step by step 

with the environment to gather experience. It learns 
the optimal policy by iteratively sampling experience 

tuples, through an empirical process of trial and error. 

III. IMPLEMENTATION 

A. Experimental Design: GridWorld Environment 

For the demonstration, a classic GridWorld environment is 

used. This environment is simple enough to analyze but complex 

enough to show important features of MDPs, especially the 

stochastic nature. 

 Environment Structure: A 3x4 grid. There are 12 

positions that can be occupied, with one position (1, 1) 

acting as an inaccessible wall or obstacle. 

 States (S): There are 11 accessible states, each 

represented by coordinates (row, column). The agent's 

initial state is (2, 0). There are two terminal states: a 

goal state with positive payoff at (0, 3) and a penalty 
state with negative payoff at (1, 3). 

 Actions (A): From each non-terminal state, the agent 

can choose one of four actions: {'UP', 'DOWN', 

'LEFT', 'RIGHT'}. 

 Transition Model (P): This environment is stochastic, 

meaning the outcome of an action is based on 

probabilities. the rules of the Transition Model 

presented as points: 

o Intended Action: The agent's intended action 

succeeds with an 80% probability. 

o Unintended Movements: There is a 20% 
chance of unintended movement, which is 

broken down as follows:  

 A 10% probability of moving 90 

degrees to the left of the intended 

direction. 

 A 10% probability of moving 90 

degrees to the right of the intended 

direction. 

o Boundary Collisions: If any resulting 

movement would cause the agent to collide 

with a wall or the grid's boundary, the agent 
stays in its original state. 

 Reward Function (R):  

o Reaching the goal state (0, 3) gives a reward 

of +1. 

o Reaching a penalty state (1, 3) gives a reward 

of -1. 

o Every other transition (regular step) provides 

a small negative reward of -0.04 to encourage 

the agent to find the shortest path. 

 Discount Factor: Set at 0.9, which indicates that the 

agent is quite “far-sighted” and considers future 

rewards significantly. 

B. Python Implementations 

 This implementation uses Python to solve a Markov 
Decision Process (MDP) in a GridWorld environment via the 
Value Iteration algorithm, constructed completely from scratch. 

A. Tools  

 

Figure 3. Importing python library 

Source: writer’s archive 

 

B. Class GridWorld 

 

Figure 4. Class GridWorld 
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Source: writer’s archive 

The GridWorld class encapsulates a complete, self-
contained environment for a Reinforcement Learning problem, 
specifically a stochastic Markov Decision Process (MDP). Its 
primary role is to define the world's structure, its rules, and the 
consequences of an agent's actions. 

 Initialization (__init__): The constructor establishes 
the environment's fixed properties. This includes the 
grid dimensions, the location of specific states (goal, 
pit, wall), the set of available states and actions, and the 
core parameters for the MDP: rewards, the gamma 
discount factor, and the transition_prob defining 
stochastic nature. 

 Helper Functions (get_states, get_actions): These 
methods serve as a direct interface for an algorithm to 
query the environment's state space and available 
actions from a specific state. 

 Environment Dynamics (get_transitions): This  
function defines the environment's dynamics. For a 
given state-action pair, it computes the complete 
probability distribution of all possible outcomes. It 
integrates the predefined stochastic rules and boundary 
conditions to determine a list of potential transitions. 
Each transition in the returned list specifies the next 
state, the resulting reward, and its corresponding 
probability. 

C. Value_iteration  

 

Figure 5. value_iteration function 

Source: writer’s archive 

This function implements the Value Iteration algorithm. 

It first iteratively sweeps through all states, repeatedly 
applying the Bellman Optimality Equation until the state-values 
converge to an optimal value function (𝑉∗), once these optimal 
values are found, it performs a final step to extract the optimal 
policy  𝜋∗(𝑠) by choosing the action that results the best long-
term reward from each state. 

Finally, it returns the optimal value function, the optimal 
policy, and the history of value updates. 

 

D. Print_grid_values 

 

Figure 6. print_grid_values function 

Source: writer’s archive 

This function, print_grid_values, is a helper for 
visualization. 

Its purpose is to display the state-values of the GridWorld in 
a readable, grid-like format. It iterates through each cell of the 
grid; if a cell is the wall_state, it prints "WALL", otherwise, it 
prints the value of that state from the values dictionary, 
formatted to two decimal places. 

E. Print_policy 

 

Figure 7. print_policy function 

Source: writer’s archive 

This function, print_policy, is a helper for visualization. 

The purpose of print_policy is to display the final, optimal 
policy in an intuitive, grid-based format. It iterates through each 
cell of the grid and, for any non-terminal state, it looks up the 
best action from the policy dictionary. It then uses a predefined 
mapping to print a corresponding arrow symbol ('↑', '↓', '←', 
'→'). For special states like the goal, pit, or wall, it prints a clear 
text label. 
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IV. EXPERIMENT 

A. Convergence of Value Function 

 
Figure 8. convergence of value function  

Source: writer’s archive 

This image visualizes the core process of Value Iteration, an 
iterative propagation of value that begins from a state of no 
initial knowledge. Starting from zero, the high reward of the goal 
state spreads outward to its neighbors in early iterations, causing 
rapid, significant changes. As the process continues, this 
information propagates further across the grid, with later 
iterations showing progressively smaller adjustments until the 
system ends up in a converged, stable value function. At this 
final stage, a clear gradient of values has emerged, accurately 
mapping the optimal long-term reward from every state to 
effectively guide an agent toward the goal. 

B. Visualization of Optimal Result 

 
Figure 9. visualization of optimal result 

Source: writer’s archive 

This image presents the final, conclusive results of the Value 
Iteration algorithm. The top grid, the Optimal Value Function 
(𝑉∗), displays the converged, maximum long-term reward 
achievable from each state, forming a clear value gradient that 
increases towards the goal. The bottom grid, the Optimal Policy 
(𝜋∗), is the direct consequence of this value function, showing a 
complete "map" of the best actions to take. For any given state, 
the policy's arrow points toward the neighboring state with the 
highest optimal value, translating the numerical value of each 
state into a recommended action. 

V. CONCLUSION 

The Value Iteration algorithm successfully solves this 

problem by applying two core concepts of Dynamic 

Programming (DP). The first concept is its systematic approach 

to decision making under uncertainty. Rather than considering 

only one ideal outcome of an action, the DP method thoroughly 

evaluates all possibilities, weighing each according to its 

probability of occurrence. This ensures that the algorithm learns 

to choose actions that are consistently effective and reliable, 

rather than being fooled by risky options that may offer high 

rewards but have a low chance of success. 

 
The second fundamental concept of  Dynamic Programming 

is its powerful iterative structure, which breaks down large, 

complex problems into a series of smaller, more manageable 

steps. The algorithm does not try to find the final answer all at 

once. Instead, it refines the solution incrementally through 

repeated iterations, where the solution at the current step is 

methodically built upon using the results obtained from 

previous steps. This step-by-step process allows important 

information about the problem’s objectives to propagate 

throughout the environment, turning a single complex 

challenge into a series of simple calculations that are repeated 

until the final optimal solution is reached. 
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APPENDIX  

Source code: https://github.com/stevennowen/Value-
Iteration-Algorithm-on-GridWorld.git. 

Video: https://youtu.be/w1MI4UE2dDE 
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