
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Solving Markov Decision Processes in Reinforcement

Learning with Dynamic Programming

Steven Owen - 13523103

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: owenliauw05@gmail.com , 13523103@std.stei.itb.ac.id

Abstract—This paper analyzes Dynamic Programming as a

key model-based approach for solving Reinforcement Learning

problems formulated as Markov Decision Processes, focusing on

the Value Iteration algorithm, a fundamental Dynamic

Programming method that finds an optimal policy by iteratively

calculating the value of each state when the environment's model

is known. A Python implementation is provided to demonstrate

this technique by solving for the optimal policy in a stochastic

GridWorld environment.

Keywords—Reinforcement Learning, Dynamic Programming,

Markov Decision Process, Value Iteration.

I. INTRODUCTION

Reinforcement Learning (RL) is one of the three main
paradigms in machine learning, alongside supervised learning
and unsupervised learning. RL focuses on how an intelligent
agent should take a series of actions in an environment to
maximize the cumulative reward signal it receives. This
paradigm is inspired by behavioral psychology, where agents
learn through trial-and-error.

The basic interactions in RL happen in discrete loops. At
every time step 𝑡, the agent perceives the present condition of
the environment, 𝑠(𝑡). From these observations, the agent
chooses an action, 𝑎(𝑡). Consequently, the environment shifts to
a new condition, 𝑠(𝑡 + 1), and gives a numerical reward, 𝑟(𝑡 +
1), to the agent. The agent's main objective is not to enhance the
immediate reward, but to increase the overall reward gathered
over an extended period. This presents a distinct challenge
referred to as the credit assignment problem, where the agent
needs to identify which actions in a series will have the greatest
impact on its future, frequently postponed, reward.

Unlike supervised learning, which learns from labeled data
(examples of correct input-output relationships), the RL agent is
not told which actions to take. Instead, it must discover the most
profitable actions by exploring the environment. This difference
makes RL particularly well-suited for problems involving
sequential decision making under uncertainty, such as in
strategic games, robotics, resource management, and
autonomous control systems.

The main objective of this paper is to provide a
comprehensive explanation and practical demonstration of the
application of Dynamic Programming (DP) algorithm strategies

in finding the optimal solution to a Markov Decision Processes.
Finding the optimal solution means finding a policy, or strategy,
that maximizes the total expected reward from all initial states.

II. THEORY

A. Dynamic Programming

Dynamic Programming is an effective technique for

problem-solving, particularly for optimization (maximization or

minimization) challenges. It operates by dividing the resolution

of a complicated issue into a sequence of steps. Consequently,

the complete solution can be seen as a sequence of connected

choices made at every stage.

The method operates on the Principle of Optimality. This

principle states that if a total solution is optimal, then every part
of the solution up to a certain stage must also be optimal. This

means that when moving from stage k to stage k+1, one can use

the optimal result from stage k without having to recalculate

from the beginning.

Problems that can be solved with Dynamic Programming

have the following characteristics:

 The problem can be divided into several stages, and

only one decision is made at each stage.

 Each stage consists of a number of states, which

generally represent the various possible inputs at

that stage.

 The decision made at one stage transforms the
current state into a state in the subsequent stage.

 A recursive relationship exists that identifies the

best decision for any state at stage k, which in turn

provides the best decision for any state at stage k+1.

 The Principle of Optimality is applicable to the

problem.

The main difference between Dynamic Programming and

Greedy Algorithms is:

 Greedy: Only a single sequence of decisions is

generated.

 Dynamic Programming: More than one sequence of
decisions is considered to find the overall optimal

solution.

There are two main approaches to implementing Dynamic

Programming:

mailto:owenliauw05@gmail.com
mailto:13523103@std.stei.itb.ac.id

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

 Forward (or up-down) Dynamic Programming:

Calculations begin from the first stage (1) and move

forward to the final stage (n).

 Backward (or bottom-up) Dynamic Programming:

Calculations begin from the final stage (n) and move
backward to the first stage (1).

The development of a Dynamic Programming algorithm

follows these steps:

1. Characterize the structure of an optimal solution: This

involves defining the stages, states, and decision

variables.

2. Recursively define the value of an optimal solution:

Formulate a recursive relationship that connects the

optimal value of one stage to the previous one

3. Compute the value of an optimal solution: Calculate

the optimal solution's value in a forward or backward
manner, typically using a table.

4. Construct an optimal solution (Optional): Reconstruct

the sequence of decisions that leads to the optimal

solution.

It is important to note that the word "program" in "Dynamic

Programming" does not refer to computer programming, but

rather to the tabular approach used to construct the solution,

similar to the term "linear programming." The term "dynamic"
arises because the process of finding a solution often involves

filling in a table in stages, which can be viewed as a process that

evolves over time.

B. Reinforcement Learning

Reinforcement Learning is an area of machine learning
concerned with how an intelligent agent ought to take actions in
an environment in order to maximize a cumulative reward. It is
a trial-and-error learning process, much like training a pet. The
agent is not told which actions to take, but instead must discover
which actions result the most reward by trying them.

Figure 1. Model-based vs Model-free Approach

Source: [7]

RL algorithms can be categorized in several ways. The most
common distinctions are based on whether the agent uses a
model of the environment and what the agent learns.

 Model-Based RL: The agent first tries to build a model
of the environment. This model predicts the
environment's responses to the agent's actions (i.e., it
learns the transition probabilities and reward function).
Once the agent has this model, it can use it for planning

to find the best policy without needing to interact with
the real environment anymore.

o Advantage: Very data-efficient. It can learn a
lot from few real-world interactions.

o Disadvantage: The agent's performance is
limited by the accuracy of its learned model.

 Model-Free RL: The agent does not try to build an
explicit model of the environment. It learns a policy
directly from trial-and-error interaction. This is the
more common approach in modern RL.

o Advantage: More flexible and easier to
implement, as it doesn't need to create a
potentially complex model.

o Disadvantage: Requires a very large number
of interactions (it is data-hungry) to learn
effectively.

Figure 2. Policy-Based vs Value-Based methods

Source: [6]

 Most modern research focuses on model-free algorithms. RL
algorithm can be further divided into three main types:

 Value-Based Methods: These methods focus on
learning a value function. The value function estimates
the maximum expected future reward from being in a
particular state (V-function) or from taking a particular
action in a state (Q-function). The policy is implicit: the
agent simply chooses the action that has the highest
estimated value.

o What it learns: The value of state-action pairs,
Q(s, a).

o Examples: Q-Learning, Deep Q-Networks
(DQN), SARSA.

 Policy-Based Methods: These methods directly learn
the policy function, 𝜋(𝑎 ∣ 𝑠), which is a direct mapping
from states to actions (or probabilities of actions).
Instead of learning values, the algorithm adjusts the
parameters of the policy directly to maximize reward.

o What it learns: The policy, 𝜋(𝑎 ∣ 𝑠).

o Examples: REINFORCE, Policy Gradients.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

 Actor-Critic Methods: This is a hybrid approach that
combines the best of both value-based and policy-
based methods. It uses two components that learn
simultaneously:

o The Actor (policy-based) is responsible for
choosing an action.

o The Critic (value-based) evaluates the action
taken by the Actor by computing a value
function. The critic's feedback is then used to
"coach" or improve the actor's policy. This
approach is the foundation for many state-of-
the-art algorithms.

o What it learns: Both a policy and a value
function.

o Examples: A2C/A3C, DDPG, PPO (Proximal
Policy Optimization).

C. Value Iteration Algorithm

One of the fundamental DP algorithms for this purpose is

Value Iteration. It perfectly illustrates the DP principles in
action.

In Value Iteration, the goal is to find the optimal value

function, which estimates the best possible long-term reward

achievable from each state in the environment.

1. Initialization: It initializes a table with an arbitrary

value for every state 𝑉0(𝑠). A common practice is to

initialize all values to zero.

𝑉0(𝑠) = 0 ∀𝑠 ∈ 𝑆

2. Iterative Update: In each subsequent stage (iteration 𝑘),

it calculates a new value for every state, 𝑉𝑘(𝑠), by

applying the Bellman equation to the values from the

previous stage, 𝑉𝑘−1(𝑠).

𝑉𝑘(𝑠) ← max
𝑎∈𝐴

∑ 𝑃𝑎(𝑠, 𝑠′)[𝑅𝑎(𝑠, 𝑠′) + γ𝑉𝑘−1(𝑠′)]

𝑠′∈𝑆

3. Convergence: This process is repeated until the values

in the table converge, meaning they no longer change

significantly between iterations. The algorithm stops

when the largest change in any state's value is smaller

than a predefined threshold θ.

max
𝑠∈𝑆

|𝑉𝑘(𝑠) − 𝑉𝑘−1(𝑠)| < θ 

4. Constructing the Solution: Once the algorithm

converges on the optimal value function (𝑉∗), the final

step is to extract the optimal policy π∗(𝑠). This is done

by selecting the action in each state that leads to the
successor state with the highest optimal value.

π∗(𝑠) = arg max
𝑎∈𝐴

∑ 𝑃𝑎(𝑠, 𝑠′)[𝑅𝑎(𝑠, 𝑠′) + γ𝑉∗(𝑠′)]

𝑠′∈𝑆

D. Markov Decision Process

A Markov Decision Process (MDP) is a mathematical
framework used to model decision-making in situations where
outcomes are partly random and partly under the control of a
decision-maker. It provides the formal language for describing
the environment in Reinforcement Learning.

An MDP is defined by five key components, often
represented as a tuple (S, A, P, R, γ):

1) S (States): A set of all possible situations or states the agent
can be in. For example, the location of a robot on a grid, or
the configuration of pieces on a chessboard.

2) A (Actions): A set of all possible actions the agent can take.
For example, the robot's possible moves (north, south, east,
west).

3) P (Transition Probability Function): 𝑃(𝑠′ | 𝑠, 𝑎). This is the
probability of transitioning from a state s to a new state 𝑠′
after the agent takes action 𝑎. This function defines the
dynamics of the environment, including its uncertainty. For
instance, an action to move north might have a 90% chance
of success but a 10% chance of sliding east.

4) R (Reward Function): 𝑅(𝑠, 𝑎, 𝑠′). This is the immediate
reward the agent receives after transitioning from state 𝑠 to
𝑠′ as a result of action 𝑎. The reward signal defines the goal
for the agent. A large positive reward might be given for
reaching a target, and a negative reward (a penalty) for
hitting an obstacle.

5) γ (Discount Factor): A value between 0 and 1 that determines
the importance of future rewards. A value close to 1 makes
the agent farsighted (caring about long-term rewards), while
a value close to 0 makes it shortsighted (caring only about
immediate rewards).

The MDP is the problem formulation, and Reinforcement

Learning is the set of solution methods. An RL problem is, at

its core, the problem of solving an MDP. The goal of any RL

agent is to find an optimal policy 𝜋∗(𝑠). A policy is a strategy

that tells the agent which action to take in any given state. An

optimal policy is the one that maximizes the cumulative

discounted reward over the long run. The connection becomes

clearer when we consider the two main approaches in RL:

 Model-Based Reinforcement Learning: Planning with
a Known Model. This paradigm assumes that the agent

has complete, a priori knowledge of the environment's

model. The model consists of the transition probability

function (P) and the reward function (R). With access

to the full dynamics of the MDP, the task of finding an

optimal policy is transformed from a learning problem

into a pure planning problem. The agent does not need

to engage in exploratory trial-and-error interaction

with the environment. Instead, it can leverage planning

algorithms, most notably those derived from Dynamic

Programming (e.g., Value Iteration and Policy

Iteration), to directly and deterministically compute

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

the optimal policy. This is analogous to solving a

system for which all governing equations are known.

 Model-Free Reinforcement Learning: Learning

without a Known Model. This paradigm addresses the

more common and complex scenario where the

environmental model is unknown or inaccessible to

the agent. The dynamics of the environment are thus

treated as an "black box.". While the agent can

perceive its current state and the set of available

actions, it cannot predict the subsequent state or the

immediate reward that will result from a given action.

To solve the MDP, the agent must interact step by step

with the environment to gather experience. It learns
the optimal policy by iteratively sampling experience

tuples, through an empirical process of trial and error.

III. IMPLEMENTATION

A. Experimental Design: GridWorld Environment

For the demonstration, a classic GridWorld environment is

used. This environment is simple enough to analyze but complex

enough to show important features of MDPs, especially the

stochastic nature.

 Environment Structure: A 3x4 grid. There are 12

positions that can be occupied, with one position (1, 1)

acting as an inaccessible wall or obstacle.

 States (S): There are 11 accessible states, each

represented by coordinates (row, column). The agent's

initial state is (2, 0). There are two terminal states: a

goal state with positive payoff at (0, 3) and a penalty
state with negative payoff at (1, 3).

 Actions (A): From each non-terminal state, the agent

can choose one of four actions: {'UP', 'DOWN',

'LEFT', 'RIGHT'}.

 Transition Model (P): This environment is stochastic,

meaning the outcome of an action is based on

probabilities. the rules of the Transition Model

presented as points:

o Intended Action: The agent's intended action

succeeds with an 80% probability.

o Unintended Movements: There is a 20%
chance of unintended movement, which is

broken down as follows:

 A 10% probability of moving 90

degrees to the left of the intended

direction.

 A 10% probability of moving 90

degrees to the right of the intended

direction.

o Boundary Collisions: If any resulting

movement would cause the agent to collide

with a wall or the grid's boundary, the agent
stays in its original state.

 Reward Function (R):

o Reaching the goal state (0, 3) gives a reward

of +1.

o Reaching a penalty state (1, 3) gives a reward

of -1.

o Every other transition (regular step) provides

a small negative reward of -0.04 to encourage

the agent to find the shortest path.

 Discount Factor: Set at 0.9, which indicates that the

agent is quite “far-sighted” and considers future

rewards significantly.

B. Python Implementations

 This implementation uses Python to solve a Markov
Decision Process (MDP) in a GridWorld environment via the
Value Iteration algorithm, constructed completely from scratch.

A. Tools

Figure 3. Importing python library

Source: writer’s archive

B. Class GridWorld

Figure 4. Class GridWorld

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Source: writer’s archive

The GridWorld class encapsulates a complete, self-
contained environment for a Reinforcement Learning problem,
specifically a stochastic Markov Decision Process (MDP). Its
primary role is to define the world's structure, its rules, and the
consequences of an agent's actions.

 Initialization (__init__): The constructor establishes
the environment's fixed properties. This includes the
grid dimensions, the location of specific states (goal,
pit, wall), the set of available states and actions, and the
core parameters for the MDP: rewards, the gamma
discount factor, and the transition_prob defining
stochastic nature.

 Helper Functions (get_states, get_actions): These
methods serve as a direct interface for an algorithm to
query the environment's state space and available
actions from a specific state.

 Environment Dynamics (get_transitions): This
function defines the environment's dynamics. For a
given state-action pair, it computes the complete
probability distribution of all possible outcomes. It
integrates the predefined stochastic rules and boundary
conditions to determine a list of potential transitions.
Each transition in the returned list specifies the next
state, the resulting reward, and its corresponding
probability.

C. Value_iteration

Figure 5. value_iteration function

Source: writer’s archive

This function implements the Value Iteration algorithm.

It first iteratively sweeps through all states, repeatedly
applying the Bellman Optimality Equation until the state-values
converge to an optimal value function (𝑉∗), once these optimal
values are found, it performs a final step to extract the optimal
policy 𝜋∗(𝑠) by choosing the action that results the best long-
term reward from each state.

Finally, it returns the optimal value function, the optimal
policy, and the history of value updates.

D. Print_grid_values

Figure 6. print_grid_values function

Source: writer’s archive

This function, print_grid_values, is a helper for
visualization.

Its purpose is to display the state-values of the GridWorld in
a readable, grid-like format. It iterates through each cell of the
grid; if a cell is the wall_state, it prints "WALL", otherwise, it
prints the value of that state from the values dictionary,
formatted to two decimal places.

E. Print_policy

Figure 7. print_policy function

Source: writer’s archive

This function, print_policy, is a helper for visualization.

The purpose of print_policy is to display the final, optimal
policy in an intuitive, grid-based format. It iterates through each
cell of the grid and, for any non-terminal state, it looks up the
best action from the policy dictionary. It then uses a predefined
mapping to print a corresponding arrow symbol ('↑', '↓', '←',
'→'). For special states like the goal, pit, or wall, it prints a clear
text label.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

IV. EXPERIMENT

A. Convergence of Value Function

Figure 8. convergence of value function

Source: writer’s archive

This image visualizes the core process of Value Iteration, an
iterative propagation of value that begins from a state of no
initial knowledge. Starting from zero, the high reward of the goal
state spreads outward to its neighbors in early iterations, causing
rapid, significant changes. As the process continues, this
information propagates further across the grid, with later
iterations showing progressively smaller adjustments until the
system ends up in a converged, stable value function. At this
final stage, a clear gradient of values has emerged, accurately
mapping the optimal long-term reward from every state to
effectively guide an agent toward the goal.

B. Visualization of Optimal Result

Figure 9. visualization of optimal result

Source: writer’s archive

This image presents the final, conclusive results of the Value
Iteration algorithm. The top grid, the Optimal Value Function
(𝑉∗), displays the converged, maximum long-term reward
achievable from each state, forming a clear value gradient that
increases towards the goal. The bottom grid, the Optimal Policy
(𝜋∗), is the direct consequence of this value function, showing a
complete "map" of the best actions to take. For any given state,
the policy's arrow points toward the neighboring state with the
highest optimal value, translating the numerical value of each
state into a recommended action.

V. CONCLUSION

The Value Iteration algorithm successfully solves this

problem by applying two core concepts of Dynamic

Programming (DP). The first concept is its systematic approach

to decision making under uncertainty. Rather than considering

only one ideal outcome of an action, the DP method thoroughly

evaluates all possibilities, weighing each according to its

probability of occurrence. This ensures that the algorithm learns

to choose actions that are consistently effective and reliable,

rather than being fooled by risky options that may offer high

rewards but have a low chance of success.

The second fundamental concept of Dynamic Programming

is its powerful iterative structure, which breaks down large,

complex problems into a series of smaller, more manageable

steps. The algorithm does not try to find the final answer all at

once. Instead, it refines the solution incrementally through

repeated iterations, where the solution at the current step is

methodically built upon using the results obtained from

previous steps. This step-by-step process allows important

information about the problem’s objectives to propagate

throughout the environment, turning a single complex

challenge into a series of simple calculations that are repeated

until the final optimal solution is reached.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

APPENDIX

Source code: https://github.com/stevennowen/Value-
Iteration-Algorithm-on-GridWorld.git.

Video: https://youtu.be/w1MI4UE2dDE

ACKNOWLEDGMENT

The completion of this paper would not have been possible
without the support and encouragement of many people. First, I
thank God for providing the strength, wisdom, and
determination to finish this work.

I sincerely thank Dr. Ir. Rinaldi, M.T, the lecturer for
Algorithm Strategy (K-02), whose insightful lectures and
helpful feedback were crucial in developing the concepts
examined in this paper.

I am also deeply grateful to my parents for their constant
support, love, and encouragement throughout my studies.
Finally, I extend my thanks to my friends, whose guidance and
companionship made this work more enjoyable and meaningful.

REFERENCES

[1] Cadilhac, Michaël & Casares, Antonio & Ohlmann, Pierre. (2025). Fast

value iteration: A uniform approach to efficient algorithms for energy

games. 10.1007/978-3-031-90653-4_16.

[2] Munir, R. (2025). Program dinamis (dynamic programming) bagian 1

[Bahan Kuliah IF2211 Strategi Algoritma]. Program Studi Teknik
Informatika, Sekolah Teknik Elektro dan Informatika, Institut Teknologi

Bandung. https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-

2025/25-Program-Dinamis-(2025)-Bagian1.pdf.

[3] Munir, R. (2025). Program dinamis (dynamic programming) bagian 2
[Bahan Kuliah IF2211 Strategi Algoritma]. Program Studi Teknik

Informatika, Sekolah Teknik Elektro dan Informatika, Institut Teknologi
Bandung. https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-

2025/26-Program-Dinamis-(2025)-Bagian2.pdf.

[4] Qiu, Yichen. (2024). Comparative Analysis of Value Iteration and Policy
Iteration in Robotic Decision-Making. Applied and Computational

Engineering. 83. 140-147. 10.54254/2755-2721/83/2024GLG0073.

[5] Shang, Zicheng. (2025). Applications for Reinforcement Learning in

Robotics: A Comprehensive Review. Highlights in Science, Engineering

and Technology. 138. 70-76. 10.54097/rnxb2k78.

[6] Simonini, T. (2022, May 18). An introduction to Q-learning part 1.

Hugging Face Blog. https://huggingface.co/blog/deep-rl-q-part1.

[7] Techslang. (2023, March 31). What is model-free reinforcement learning?
Techslang. Retrieved June 20, 2025, from

https://www.techslang.com/definition/what-is-model-free-

reinforcement-learning/.

[8] When Can Model-Free Reinforcement Learning be Enough for

Thinking?. (2025). 10.48550/arXiv.2506.17124.

[9] Xu, Yan & Wu, Qide. (2024). Markov Decision Process Modeling in
Pharmacoeconomics with Application Perspectives. Applied

Mathematics and Nonlinear Sciences. 9. 10.2478/amns-2024-2458.

[10] Zhang, Yunong. (2024). A survey of dynamic programming algorithms.
Applied and Computational Engineering. 35. 183-189. 10.54254/2755-

2721/35/20230392.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini
adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi.

Bandung, 22 Juni 2025

Steven Owen - 13523103

https://github.com/stevennowen/Value-Iteration-Algorithm-on-GridWorld.git
https://github.com/stevennowen/Value-Iteration-Algorithm-on-GridWorld.git
https://youtu.be/w1MI4UE2dDE
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/25-Program-Dinamis-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/25-Program-Dinamis-(2025)-Bagian1.pdf
https://www.google.com/search?q=https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/26-Program-Dinamis-(2025)-Bagian2.pdf
https://www.google.com/search?q=https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/26-Program-Dinamis-(2025)-Bagian2.pdf
https://huggingface.co/blog/deep-rl-q-part1
https://www.techslang.com/definition/what-is-model-free-reinforcement-learning/
https://www.techslang.com/definition/what-is-model-free-reinforcement-learning/

	I. Introduction
	II. Theory
	A. Dynamic Programming
	B. Reinforcement Learning
	C. Value Iteration Algorithm
	D. Markov Decision Process

	III. Implementation
	A. Experimental Design: GridWorld Environment
	B. Python Implementations

	IV. Experiment
	A. Convergence of Value Function
	B. Visualization of Optimal Result

	V. Conclusion
	Appendix
	Acknowledgment
	References

